TEACHERS RECRUITMENT BOARD, CHENNAI-6 WRITTEN COMPETITIVE EXAMINATION FOR

 POST GRADUATE ASSISTANTS (2006-2007) - H-04 - A Series Time Allowed : 3 Hours][Maximum Marks : 150

1. In Indian history, who is known as the 'Indian Napoleon'?
A) Asoka
B) Chandragupta II
C) Chanakya
D) Samudragupta
2. Who of the following is associated with the theory of "Laissez-faire" in Economics?
A) Malthus
B) Marshall
C) Adam Smith
D) Keynes
3. The boundary line between India and China is known as
A) Radcliffe line
B) Durand line
C) McMahon line
D) Maginot line
4. Which of the following countries is called the "Land of White Elephants"?
A) Malaysia
B) Thailand
C) Canada
D) Ethiopia
5. Who was the founder of Brahmo Samaj?
A) Raja Rammohan Roy
B) Rabindranath Tagore
C) Keshab Chandra Sen
D) M. G. Ranade
6. Malaria is caused by
A) Plasmodium
B) Virus
C) DNA
D) Bacterium
7. Article $\mathbf{1 4}$ of the Constitution of India deals with
A) Equality before law
B) Abolition of untouchability
C) Freedom of speech
D) Freedom of religion
8. Dynamo is a device for converting
A) electricity to mechanical energy
B) mechanical energy to electrical energy
C) magnetism to electricity
D) electricity to magnetism
9. Which of the following dynasties was not in power during the Sangam age?
A) Pandyas
B) Cheras
C) Cholas
D) Pallavas
10. Which country did Italy beat in the finals of the FIFA World Cup 2006?
A) Germany
B) France
C) Portugal
D) Spain
11. A useful teaching-learning method for slow learners is
A) Lecture
B) Self-learning
C) Memorising
D) Group learning
12. There is a story about a fox, who unable to reach some grapes, proclaimed that they were sour. This is a kind of
A) intellectualization
B) rationalization
C) negativism
D) egocentrism
13. Attempts to train defectives and delinquents, so as to make them, as far as possible, useful and efficient members of the community is called
A) Remedial instruction
B) Programmed instruction
C) Physical instruction
D) Religious instruction
14. In an intelligence test a ten year old boy is found to have a mental age of 11 . This I.Q. is calculated as
A) 100
B) 120
C) 110
D) 90
15. DIET stands for
A) District Institute for Employment of Teachers
B) District Institute of Education and Training
C) District Institute of Elementary Teacher Education
D) District Institute of Educational Technology
16. Self actualisation is defined as "the full development of personal potential" by
A) Rotter
B) Maslow
C) McCleland
D) Hull
17. Educationist Froebel is
A) an idealist
B) a naturalist
C) a realist
D) a pragmatist
18. School started by Madam Montessori was known as
A) Children's House
B) Boys' School
C) Summer Hill School
D) Girls' School
19. MLL represents
A) Marginal Level of Learning
B) Maximum Level of Learning
C) Motor Learning Level
D) Minimum Level of Learning
20. The name of the educational policy of Gandhiji is
A) Social Education
B) Basic Education
C) Technical Education
D) Rural Education
21. A period showing no progress in a learning curve is termed as
A) error
B) inhibition
C) plateau
D) terminal point
22. Group factor theory of intelligence was proposed by
A) Spearman
B) Thorndike
C) Thurstone
D) Guilford
23. I.Q. can be calculated using the formula
A) $\frac{\text { Mental Age }}{\text { Chronological Age }} \times 100$
B) $\frac{\text { Chronological Age }}{\text { Mental Age }} \times 100$
C) $\frac{\text { Mental Age }}{\text { Chronological Age }}$
D) $\frac{\text { Chronological Age }}{\text { Mental Age }}$
24. Which type of thinking is very essential for creativity?
A) Positive thinking
B) Convergent thinking
C) Practical thinking
D) Divergent thinking
25. Robert Gagne's theory of hierarchical learning consists of
A) 7 types of learning
B) 2 types of learning
C) 8 types of learning
D) 10 types of learning
26. Which Article of the Constitution of India advocates free and compulsory school education?
A) Article 354
B) Article 45
C) Article 30
D) Article 31
27. The most effective way of character formation in students is to
A) advise the students frequently
B) narrate about the lives of great men and women
C) organise religious functions in the school
D) make them sing songs
28. A loud explosion is heard as you are teaching the class. What would you do?
A) Stay in the class and send the class leader to find the details
B) Walk out of the class to know details
C) Run to neighbouring class for information
D) Advise the students to get away from the class in an orderly manner
29. The agency which helps to improve the quality of school education at state level is
A) NCERT
B) NCTE
C) SCERT
D) DTE
30. Education leads to the modification of
A) Attitude
B) Behaviour
C) Life
D) Interest
31. Value Education means
A) Religious Education
B) Moral Education
C) Cost Education
D) Economics of Education
32. Punishment is
A) Reinforcement
B) Negative Reinforcement
C) Positive Reinforcement D
D) Encouragement
33. Growth and development of the child are determined by two factors
A) heredity and school
B) school and home
C) home and society
D) heredity and environment
34. Learning in free atmosphere was advocated by
A) Montessori
B) Gagne
C) J. Krishnamurthy
D) Gandhiji
35. Thematic Apperception Test (TAT) is conducted to test the
A) intelligence of a person
BB) personality of a person
C) memory of a person
D) achievement of a person
36. 'There is a tendency for all of us to seek our faults in others' is termed as
A) introjection
B) repression
C) projection
D) rationalisation
37. What is the principle behind individualised instruction?
A) Reinforcement and learning
B) Accommodation
C) Adaptation
D) Schemes
38. Who advocated the method of 'Learning by doing'?
A) A.S.. Neil
B) John Dewey
C) Bertrand Russell
D) Kilpatrick
39. Which of the following plays the major role in social development of a child?
A) School
B) Family
C) Society
D) Neighbours
40. An objective factor which determines attention in the classroom is
A) interest
B) novelty
C) sentiment
D) attitude
41. The implementation of the following logic circuit performs logic

A) AND
B) OR
C) NAND
D) NOR
42. How many flip-flops are required to store a decimal number 100 in binary register?
A) 3
B) 4
C) 6
D) 8
43. How many binary bits are added at a time in a full adder?
A) 2
B) 3
D) 6
44. What is the attenuation produced by the feedback network in a phase shift oscillator?
A) 3
B) 8
C) 17
D) 29
45. The feedback component in an Op-Amp integrator circuit is
A) an inductor
B) a resistor
C) a capacitor
D) a transistor
46. In a practical sample and hold circuit the control gate is
A) AND gate
B) NAND gate
C) a FET
D) a MOSFET
47. Which of the following multivibrators has the inherent characteristic of dividing the input frequency by two?
A) monostable
B) bistable
C) astable
D) tristable
48. The cavity magnetron uses strapping to
A) prevent mode jumping
B) prevent cathode back-heating
C) ensure bunching
D) improve the phase-focusing effect
49. In 8085 microprocessor the \qquad register pair serves as a 16 bit accumulator
A) $W Z$
B) BC
C) DE
D) HL
50. On execution of the instruction MVIA, 00 H which of the following flags will be affected?
A) Z flag
B) CY flag
C) AC flag
D) No flag
51. The main features of liquid drop model and shell model are combined and proposed as
A) optical model
B) collective model
C) Nelson model
D) none of these
52. Which one of the following has a continuous spectrum?
A) X-ray
B) α-ray
C) β-ray
D) λ-ray
53. GM counter should always be worked in
\qquad as indicated by its characteristic curve
A) ohmic region
B) plateau region
C) breakdown region
D) none of these
54. The purpose of moderator in a nuclear reactor is to
A) increase the reaction
B) cool the reactor
C) to slow down the fast neutrons
D) to absorb the neutron
55. If the multiplication factor $K>1$, the reaction is called
A) critical
B) super-critical
C) sub-critical
D) none of these
56. The particle, which most easily penetrates through the nucleus of an atom, is
A) neutron
B) electron
C) proton
D) β-particles
57. The sun releases energy by
A) nuclear fission
B) nuclear fusion
C) spontaneous combustion
D) hydrothermal process
58. The scintillation counter
A) is not used for counting α - particles
B) counts only β - rays
C) uses a material, which emits light when a charged particle strikes it
D) counts only γ - particles
59. Fast neutrons are slowed down by
A) diffraction through a slit
B) using shield of lead
C) passing them through a substance rich in hydrogen
D) sheet of iron
60. Which of the following flip-flops has overcome
the race around problem?
A) RS
B) RST
C) JK
D) $\frac{M}{S}$
61. Partial wave analysis can be applied when the potential is
A) zero
B) spherically symmetric
C) negative
D) none of these
62. In perturbation theory Fermi's golden rule gives
A) reflection coefficient
B) total energy
C) $\frac{\text { transition probability }}{\text { unit time }}$
D) transmission coefficient
63. Born approximation can be applied for
A) low energy particles
B) high energy particles
C) negative energy particles
D) all the particles
64. In case of a potential step of height V_{0}, for a particle of energy $E<V_{0}$, the transmittance is
A) zero
${ }^{0}$ B) finite non-zero
C) infinite
D) 1
65. The degree of degeneracy for 3D isotropic harmonic oscillator is
A) n^{3}
B) $2 n^{2}+1$
C) $\frac{1}{2}(2 n+1)(2 n+2)$
D) $\frac{1}{2}(\mathrm{n}+1)(\mathrm{n}+2)$
66. The energy of a particle in a box is given by
A) $\frac{n \hbar^{2} \pi^{2}}{2 m L}$
B) $\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}$
C) $\frac{\pi^{2} \hbar^{2}}{2 m L}$
D) $\frac{n \hbar}{2 \pi}$
67. The minimum value of angular momentum obtained by coupling three angular momenta 1, $\frac{3}{2} \& \frac{5}{2}$ is
A) 1
B) $\frac{1}{2}$
C) 0
D) $\frac{3}{2}$
68. Which of the following is an Eigen function of L_{z} ?
A) $\stackrel{2}{\cos \phi}$
B) $\sin ^{2} \phi$
C) $e^{i \phi}$
D) $\cos ^{2} \phi$
69. The minimum energy required to disrupt a stable nucleus is
A) binding energy
B) zero point energy
C) potential energy
D) none of these
70. The electrostatic repulsion between protons tends to \qquad the binding energy
A) decrease
B) increase
C) not alter
D) make zero
71. The volume of the parallelopiped whose edges are represented by $\overrightarrow{\mathbf{a}}=\mathbf{2 \hat { \mathbf { i } }} \mathbf{- 3 \hat { \mathbf { j } }}+\mathbf{2} \hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+\mathbf{2} \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{c}}=\mathbf{2} \hat{\mathbf{i}}-\hat{\mathbf{j}}+\mathbf{3} \hat{\mathbf{k}}$ is,
A) 5
B) 10
C) 15
D) 20
72. A vector field expressible as the negative gradient of a scalar field is called
A) non-conservative field
B) conservative field
C) lamellar field
D) non-lamellar field
73. Stokes' theorem relates to
A) volume integral and line integral
B) surface integral and line integral
C) a differential and volume integral
D) surface integral and volume integral
74. In the spherical co-ordinate (r, θ, ϕ) system the scale factors (h_{1}, h_{2}, h_{3}) are given by
A) $(r, r \sin \theta, r \cos \phi)$
B) $(r, r \cos \theta, r \sin \phi)$
C) $(1, r \sin \theta, r \sin \phi)$
D) $(1, r, r \sin \theta)$
75. The rank of the diagonal matrix $\left[\begin{array}{lllll}1 & & & & \\ & 0 & & & \\ & & 2 & & \\ & & & -5 & \\ & & & & 0\end{array}\right]$ is
A) 1
B) 2
C) 3
D) 4
76. Divergence of a vector $\vec{A}=A_{1} \hat{\mathbf{e}}_{1}+A_{2} \hat{\mathbf{e}}_{2}+A_{3} \hat{\mathbf{e}}_{3}$ in orthogonal curvilinear co-ordinates is given by
A) $\frac{1}{\mathrm{~h}_{1} \mathrm{~h}_{2} \mathrm{~h}_{3}}\left[\frac{\partial}{\partial \mathrm{u}_{1}}\left(\mathrm{~A}_{1} \mathrm{~h}_{2} \mathrm{~h}_{3}\right)+\frac{\partial}{\partial \mathrm{u}_{2}}\left(\mathrm{~A}_{2} \mathrm{~h}_{3} \mathrm{~h}_{1}\right)+\frac{\partial}{\partial \mathrm{u}_{3}}\left(\mathrm{~A}_{3} \mathrm{~h}_{1} \mathrm{~h}_{2}\right)\right]$
B) $h_{1} h_{2} h_{3}\left[\frac{\partial}{\partial u_{1}}\left(A_{1} h_{2} h_{3}\right)+\frac{\partial}{\partial u_{2}}\left(A_{2} h_{3} h_{1}\right)+\frac{\partial}{\partial u_{3}}\left(A_{3} h_{1} h_{2}\right)\right]$
C) $\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(A_{3} h_{1} h_{2}\right)+\frac{\partial}{\partial u_{2}}\left(A_{1} h_{2} h_{3}\right)+\frac{\partial}{\partial u_{3}}\left(A_{2} h_{3} h_{1}\right)\right]$
D) $h_{1} h_{2} h_{3}\left[\frac{\partial}{\partial u_{1}}\left(A_{3} h_{1} h_{2}\right)+\frac{\partial}{\partial u_{2}}\left(A_{1} h_{2} h_{3}\right)+\frac{\partial}{\partial u_{3}}\left(A_{2} h_{3} h_{1}\right)\right]$
77. Which one of the following is true for a Hermitian matrix (A)?
A) Diagonal elements are pure imaginary
B) $A^{\dagger}=A$
C) Eigen values are real
D) $\mathrm{A}^{-1}=\mathrm{A}$
78. Eigen values of the matrix $\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$ are
A) 1,3
B) 2,4
C) 1,4
D) 2,3
79. If the vectors \vec{A} and \vec{B} are irrotational, then
A) $\vec{A} \times \vec{B}$ is also irrotational
B) $\vec{A} \cdot \vec{B}$ is irrotational
C) $\vec{A} \times \vec{B}$ is solenoidal
D) $\vec{A} \cdot \vec{B}$ is solenoidal
80. Of the following Bessel's differential equation is
A) $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0$
B) $x^{3} \frac{d^{2} y}{d x^{2}}+x^{2} \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0$
C) $\frac{d^{2} y}{d x^{2}}+\left(1-x^{2}\right) \frac{d y}{d x}+n^{2} y=0$
D) $x^{2} \frac{\mathrm{~d}^{2} y}{d x^{2}}+x \frac{\mathrm{dy}}{\mathrm{dx}}+\left(x^{2}-\mathrm{n}^{2}\right) y=0$
81. The first law of thermodynamics is the conservation of
A) momentum
B) energy
C) mass
D) both (A) and (B)
82. The change in entropy is
A) positive in a reversible change
B) negative in an irreversible change
C) positive in an irreversible change
D) negative in a reversible change
83. When a superconductor is cooled in a magnetic field at the transition temperature T_{c} lines of induction B are pushed out. This phenomenon is called
A) Zeeman effect
B) Paschen-Back effect
C) Peltier effect
D) Meissner effect
84. The London equation for the super-conductor is given by
A) $J_{S}=-\left(\frac{n_{z} e^{2}}{m}\right) \overrightarrow{\mathrm{E}}$
B) $\mathrm{J}_{\mathrm{S}}=-\left(\frac{\mathrm{n}_{2} e}{\mathrm{~m}}\right) \overrightarrow{\mathrm{E}}$
C) $\mathrm{J}_{\mathrm{S}}=\left(\frac{\mathrm{n}_{2} e^{2}}{m}\right) \vec{H}$
D) $\mathrm{J}_{\mathrm{S}}=\left(\frac{\mathrm{n}_{2} e}{\mathrm{~m}}\right) \overrightarrow{\mathrm{H}}$
where the symbols have their usual meaning
85. Ice $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is an example for
A) triclinic system
B) hexagonal system
C) monoclinic system
D) orthorhombic system
86. Type I superconductors have properties, which are characteristics of a pure elemental superconductor i.e.
A) a fair low value of H_{C}
B) a very high value of H_{C}
C) broad transition of zero resistivity
D) very narrow transition of zero resistivity
87. The combined form of first and second laws of thermodynamics is given by
A) $\mathrm{TdS}=\mathrm{dU}+\mathrm{PdV}$
B) $\mathrm{dQ}=\mathrm{TdS}+\mathrm{PdV}$
C) $d U=T d S+d Q$
D) $\mathrm{TdS}=\mathrm{dU}-\mathrm{PdV}$
88. $\left[\boldsymbol{x}, \mathbf{p}_{x}\right]=\left[\mathbf{y}, \mathbf{p}_{\mathrm{y}}\right]=\left[\mathbf{z}, \mathbf{p}_{\mathrm{z}}\right]=$
A) i \hbar
B) $x y z$
C) $p_{x} p_{y} p_{z}$
D) 0
89. In a linear harmonic oscillator, the zero point energy is
A) $\frac{1}{2} \hbar \omega_{\text {c }}$
B) $\frac{5}{2} \hbar \omega_{\text {C }}$
C) $5 \hbar \omega_{\text {C }}$
D) $2 \hbar \omega_{\mathrm{C}}$
90. Which of the following is true?
A) $\left[\mathrm{L}_{x}, \mathrm{~L}_{y}\right]=\mathrm{i} \hbar \mathrm{L}_{z}$
B) $\left[\mathrm{L}_{x}, \mathrm{~L}_{y}\right]=\hbar \mathrm{L}_{z}$
C) $\left[\mathrm{L}_{x}, \mathrm{~L}_{y}\right]=\hbar \mathrm{L}_{x}$
D) $\left[\mathrm{L}_{x}, \mathrm{~L}_{\mathrm{y}}\right]=0$
91. At ordinary temperature the molecules
A) remain in their highest vibrational level
B) remain in their lowest vibrational level
C) remain in any vibrational level
D) does not show any type of vibration
92. The allowed rotational energy in a diatomic molecule is $E_{r}=B J(J+1)$ where B is given by
A) $B=\frac{h}{8 \pi^{2} \mathrm{IC}}$
B) $B=\frac{h^{2}}{4 \pi \mathrm{IC}}$
C) $\mathrm{B}=\frac{\mathrm{h}^{2}}{4 \pi^{2} \mathrm{I}^{2} \mathrm{C}}$
D) $\mathrm{B}=\frac{\mathrm{h}}{8 \pi^{2} \mathrm{I}^{2} \mathrm{C}}$
93. If several molecules have same energy then they are said to be
A) in ground state
B) in higher energy level
C) in degenerate state
D) in metastable state
94. The symmetric stretching mode of vibration of CO_{2} is
A) Raman active
B) Raman inactive
C) IR active
D) active in visible region
95. In the experimental set-up of Raman effect, the signal is measured by
A) lens
B) sensitive photo-multiplier
C) filter
D) spectrometer
96. Electronic spectra arise due to the changes in the arrangement of
A) neutrons
B) protons
C) molecular electrons
D) protons and neutrons
97. A conductor, which exhibits zero resistivity or infinite conductivity at critical temperature, is called a
A) dielectric material
B) super-conductor
C) semi-conductor
D) diamagnetic material
98. Value of atomic radius of a face centered cubic structure is
A) $\frac{a}{2}$
B) $\frac{\sqrt{3 a}}{4}$
C) $\frac{\sqrt{2 a}}{4}$
D) $\frac{\sqrt{3 \pi}}{8}$
99. The first Brillouin zone is the Wigner Seitz primitive cell of the
A) crystal lattice
B) reciprocal lattice
C) lattice planes
D) Bravais lattice
100.According to Debye's T^{3} law the specific heat $\mathbf{C}_{\mathbf{v}}$ at high temperature is
A) approximately equal to $3 R$
B) approximately equal to T^{3}
C) approximately equal to T^{2}
D) approximately equal to T
101.At an interface separating two dielectric media
A) tangential component of \vec{E} and normal component of \bar{B} are continuous
B) tangential components of \vec{D} and \vec{H} are continuous
C) normal components of \vec{D} and \vec{H} are continuous
D) normal component of \vec{D} and tangential component of $\overrightarrow{\mathrm{H}}$ are continuous
100. When electromagnetic field (with varying frequency) is applied to a polar molecular system, the dielectric constant of the system
A) remains unchanged
B) increases with increase in frequency
C) varies anomalously
D) decreases with increase in frequency
101. Mass of an object in motion appears to be double its rest mass. The speed of the object is. \qquad time the velocity of light
A) $\frac{1}{2}$
B) $\frac{1}{\sqrt{3}}$
C) $\frac{1}{4}$
D) $\frac{\sqrt{3}}{2}$
104.If a particle and its anti-particle get annihilated with the release of energy E, the mass of each particle should be
A) $\frac{E}{2 c^{2}}$
B) $\frac{E}{c^{2}}$
C) $\frac{2 E}{c^{2}}$
D) $\frac{E}{2 c}$
105.According to Einstein's special theory of relativity
A) space is absolute, but time is relative
B) space and time are both relative
C) space is relative, but time is absolute
D) space and time are both absolute
106.Pure rotational spectrum of a diatomic molecule consists of
A) two equally spaced lines
B) no regular pattern
C) three equally spaced lines
D) many equally spaced lines
107.The selection rule for vibrational transitions obtained in vibrational-rotational spectra is given by
A) $\nabla v= \pm 1$
B) $\nabla \mathrm{J}= \pm 2$
C) $\nabla \mathrm{J}= \pm 1$
D) $\nabla v=0$
108.The probability of transition between the given vibrational levels of two electronic states A \& B is determined by
A) Pauli's exclusion principle
B) Frank-Condon principle
C) Hund's Rule
D) Mutual exclusion principle
109.The doublets observed in alkali spectra are due to
A) screening of the k-electrons
B) spin orbit interaction of the electrons
C) pressure of the isotopes
D) spin-spin interaction
110.In Raman rotation-vibration spectra Q branch is
A) present
B) absent
C) present as it is in the IR spectra
D) present as it is in the UV region
111.Maxwell-Boltzmann distribution can be applied to a system of
A) indistinguishable particles
B) distinguishable particles
C) interacting electrical particles
D) interacting neutral particles
112.The density of state in the phase space can be shown to be equal to
A) h^{3}
B) $\frac{1}{\mathrm{~h}^{3}}$
C) h^{2}
D) h
113.There is a no triple point for
A) Helium
B) Hydrogen
C) Nitrogen
D) Argon
114.Fountain effect is shown by
A) Liquid He II
B) Liquid He I
C) Hydrogen
D) Oxygen
115.The electric field \vec{E} at the centre of a uniformly charged spherical conductor of radius R in vacuum is
A) $\frac{\mathrm{qr}}{4 \pi \varepsilon_{0} \mathrm{R}^{3}}$
B) $\frac{\mathrm{q}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}}$
C) $\frac{\mathrm{q}}{4 \pi \varepsilon_{0} \mathrm{R}^{2}}$
D) zero
116.Differential form of Gauss's law in MKS system is
A) $\nabla . \overrightarrow{\mathrm{E}}=4 \pi \rho$
B) $\nabla . \overrightarrow{\mathrm{E}}=\frac{\rho}{4 \pi \varepsilon_{0}}$
C) $\nabla . \overrightarrow{\mathrm{E}}=\frac{\rho}{\varepsilon_{0}}$
D) $\nabla \cdot \overrightarrow{\mathrm{E}}=\rho$
117.Electric displacement current arises due to
A) positive charges only
B) both positive and negative charges
C) negative charges only
D) time varying electric field
102. Magnetic vector potential due to magnetic dipole is proportional to
A) r^{-1}
B) r^{-2}
C) r^{-3}
D) r
119.The law of conservation of energy in electromagnetism is
A) Gauss's theorem
B) Poynting's theorem
C) Continuity equation
D) Brewster's law
120.The electric field \vec{E} in terms of the electromagnetic potentials is given by
A) $\nabla \times \overrightarrow{\mathrm{A}}$
B) $-\nabla \phi-\nabla \times \overrightarrow{\mathrm{A}}$
C) $-\nabla \phi-\frac{\partial \overrightarrow{\mathrm{A}}}{\partial \mathrm{t}}$
D) $-\nabla \phi+\frac{\partial \overrightarrow{\mathrm{A}}}{\partial \mathrm{t}}$
where the symbols have their usual meaning.
121.If \vec{F}_{i} is the actual force and $\overrightarrow{\dot{p}}_{i}$ the reversed effective force then D' Alembert's principle is given by
A) $\sum_{i}\left(\vec{F}_{i}-\overrightarrow{\mathrm{P}}_{i}\right) \cdot \delta r_{i}=0$
B) $\sum_{i}\left(\overrightarrow{\mathrm{P}}_{i}-\overrightarrow{\mathrm{F}}_{i}\right) \cdot \delta \mathrm{r}_{i}=0$
C) $\Delta \int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} \sum_{i} \mathrm{p}_{i} \dot{\mathrm{q}}_{i} \mathrm{dt}=0$
D) $\int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} \sum_{j} \mathrm{p}_{j} \mathrm{q}_{j} \mathrm{dt}=0$
103. Generation of body set of axes from space set of axes through three successive rotations gives
A) Lorentz transformations
B) Euler angles
C) a non-orthogonal transformation
D) none of these
123.Hamilton's principle is stated as
A) $\delta \mathrm{I}=\delta \int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}}(\mathrm{H}+\Delta \mathrm{H}) \mathrm{dt}=0$
B) $\delta \mathrm{I}=\delta \int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}}(\mathrm{~L}+\Delta \mathrm{L}) \mathrm{dt}=0$
C) $\delta I=\delta \int_{t_{1}}^{t_{2}} L d t=0$
D) $\delta \mathrm{I}=\delta \int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}}(\mathrm{H}-\Delta \mathrm{H}) \mathrm{dt}=0$
124.It can be shown that
A) $v_{\text {r.m.s. }}=\sqrt{\frac{3 K T}{M}}$
B) $V_{\text {r.m.s. }}=\sqrt{\frac{2 \mathrm{KT}}{\mathrm{M}}}$
C) $V_{\text {r.m.s. }}=\sqrt{\frac{K T}{M}}$
D) $V_{\text {r.m.s. }}=\sqrt{\frac{M}{3 K T}}$
where the symbols have their usual meaning
125.Pauli's exclusion principle is obeyed by
A) particles with zero spin
B) bosons
C) fermions
D) particles with either integral spin or half integral spin
126.According to Maxwell's law of equi-partition of energy, the energy associated with each degree of freedom is
A) $\frac{1}{2} \mathrm{KT}$
B) 5 KT
C) 2 KT
D) $\frac{2}{5} \mathrm{KT}$
127.Fermi-Dirac statistics are applied for particles with
A) zero spin
B) integral spin
C) zero and integral spin
D) half integral spin

128. Liquid He has

A) high viscosity
B) zero viscosity
C) low viscosity
D) very high viscosity
129.Phase-space is
A) 1-dimensional
B) 3-dimensional
C) 4-dimensional
D) 6-dimensional
130.The relation between entropy(s) and
probability (w) is
A) $s=k \ln w$
B) $s=\frac{k}{w}$
C) $s=w$
D) $s=k-w$
131.Representation of groups that may be expressed in terms of representation of lower dimensionality is
A) irreducible
B) reducible
C) unitary
D) character representation
132.Special unitary group $S U(n)$ is the group of all $n \times n$ unitary matrices with determinant
A) +1
B) ± 1
C) -1
D) $\pm n$
133. From Newton's second law of motion in the equation $\frac{d \vec{P}}{d t}=\vec{F}$, linear momentum is conserved if
A) the total force is zero
B) the total force is non-zero
C) the angular momentum changes
D) the angular momentum does not change
134.The number of independent ways in which a mechanical system can move without violating any constraint, which may be imposed, is called
A) the number of degrees of freedom of the system
B) a holonomic constraint
C) a scleronomic constraint
D) a non-holonomic constraint
135. In the description of an object rolling on a rough surface without slipping, the description of its motion involves
A) a holonomic constraint
B) a rheonomic constraint
C) a non-holonomic constraint
D) a scleronomic constraint
136.Lagrange's equation of motion is
A) a second order differential equation
B) dependent on the co-ordinates used
C) independent of time
D) a first order differential equation
137.Lagrange's equation of motion for one dimension L.H.O. can be written as
A) $\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\partial \mathrm{L}}{\partial \mathrm{x}}\right)-\left(\frac{\partial \mathrm{L}}{\partial \mathrm{x}}\right)=0$
B) $\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\partial \mathrm{L}}{\partial x}\right)-\left(\frac{\partial \mathrm{L}}{\partial \mathrm{x}}\right)=0$
C) $\frac{d}{d t}\left(\frac{\partial L}{\partial x}\right)=0$
D) $\left(\frac{\partial L}{\partial x}\right)-\left(\frac{\partial L}{\partial x}\right)=0$
138.Hamilton's canonical equations of motion are represented by
A) $\quad \dot{\mathrm{q}}_{\mathrm{i}}=\frac{\partial \mathrm{H}}{\partial \mathrm{P}_{\mathrm{j}}}, \dot{\mathrm{p}}_{\mathrm{j}}=-\frac{\partial \mathrm{H}}{\partial \mathrm{q}_{\mathrm{j}}}$
B) $\dot{\mathrm{q}}_{\mathrm{i}}=-\frac{\partial \mathrm{H}}{\partial \mathrm{P}_{\mathrm{j}}}, \dot{\mathrm{p}}_{\mathrm{j}}=-\frac{\partial \mathrm{H}}{\partial \mathrm{q}_{\mathrm{j}}}$
C) $\quad \dot{\mathrm{q}}_{\mathrm{i}}=\frac{\partial \mathrm{H}}{\partial \mathrm{P}_{\mathrm{j}}}, \dot{\mathrm{p}}_{\mathrm{j}}=\frac{\partial \mathrm{H}}{\partial \mathrm{q}_{\mathrm{j}}}$
D) $\quad \dot{\mathrm{q}}_{\mathrm{i}}=-\frac{\partial \mathrm{H}}{\partial \mathrm{P}_{\mathrm{j}}}, \dot{\mathrm{p}}_{\mathrm{j}}=\frac{\partial \mathrm{H}}{\partial \mathrm{q}_{\mathrm{j}}}$
139.The principle of least action for conservative system is expressed as
A) $\int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{j}} \dot{\mathrm{q}}_{\mathrm{j}} \mathrm{dt}=0$
B) $\Delta \int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{j}} \dot{\mathrm{q}}_{\mathrm{j}} \mathrm{dt}=0$
C) $\Delta \int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} \sum_{\mathrm{j}} \dot{\mathrm{p}}_{\mathrm{j}} \mathrm{dt}=0$
D) $\Delta \int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} \sum_{\mathrm{j}} \dot{\mathrm{q}}_{\mathrm{j}} \mathrm{dt}=0$
140.L $=I \vec{\omega}$ implies that L is the angular momentum, $\vec{\omega}$ the angular velocity vector and I represents
A) tensor of rank 3
B) a vector
C) the moment of inertia tensor
D) none of these
141.Legendre's polynomial is given by $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$. When $n=2$ the polynomial is given by
A) $3 x^{2}-1$
B) $\frac{1}{2}\left(3 x^{2}-1\right)$
C) $3 x-1$
D) $\frac{1}{4}(3 x-1)$
142.The Gamma function Γ_{n} is given by $\Gamma_{\mathrm{n}}=\int_{0}^{\infty} \mathbf{e}^{-x} x^{n-1} d x$. It is known that $\sqrt{\mathrm{n}+1}=\mathbf{n} \sqrt{\mathbf{n}}$. Then $\sqrt{n+1}$ is also given by
A) n !
B) $(n+1)$!
C) $(\mathrm{n}-1)$!
D) $\frac{n!}{(n+1)!}$
143.The probability of throwing 10 with two dice is
A) $\frac{1}{9}$
B) $\frac{1}{6}$
C) $\frac{1}{24}$
D) $\frac{1}{12}$
144. If the probabilities of some events are P_{1}, P_{2},
\qquad P_{n} then the probability that at least one of the events will occur is
A) $1-\mathrm{P}_{1}-\mathrm{P}_{2}-\mathrm{P}_{3} \ldots \ldots-\mathrm{P}_{\mathrm{n}}$
B) $\left(1-\mathrm{P}_{1}\right)\left(1-\mathrm{P}_{2}\right)\left(1-\mathrm{P}_{3}\right) \ldots \ldots\left(1-\mathrm{P}_{\mathrm{n}}\right)$
C) $1-\left(1-\mathrm{P}_{1}\right)\left(1-\mathrm{P}_{2}\right)\left(1-\mathrm{P}_{3}\right) \ldots \ldots\left(1-\mathrm{P}_{\mathrm{n}}\right)$
D) $P_{1}+P_{2}+P_{3}+\ldots \ldots .+P_{n}$
145.A bag contains 9 bolts, of which 2 are defective. Two bolts are drawn without replacement. The probability that both of them are not defective is
A) $\frac{7}{12}$
B) $\frac{14}{27}$
C) $\frac{1}{36}$
D) $\frac{7}{36}$
146.The binomial distribution whose mean is 5 and variance is $\frac{10}{3}$ is
A) ${ }^{10} \mathrm{C}_{\mathrm{r}}\left(\frac{2}{3}\right)^{\mathrm{r}}\left(\frac{1}{3}\right)^{15-\mathrm{r}}$
B) ${ }^{15} \mathrm{C}_{\mathrm{r}}\left(\frac{1}{2}\right)^{\mathrm{r}}\left(\frac{1}{2}\right)^{15-\mathrm{r}}$
C) ${ }^{15} \mathrm{C}_{\mathrm{r}}\left(\frac{1}{3}\right)^{\mathrm{r}}\left(\frac{2}{3}\right)^{15-\mathrm{r}}$
D) ${ }^{10} \mathrm{C}_{\mathrm{r}}\left(\frac{1}{2}\right)^{\mathrm{r}}\left(\frac{2}{3}\right)^{15-\mathrm{r}}$
147.In Poisson distribution the probability is given by $P(r)=\frac{m^{r} e^{-m}}{r!}$. If $8 P(0)=P(2)$, then the standard deviation is
A) 16
B) 4
C) 2
D) $\sqrt{2}$
148.If $x_{1}, x_{2}, \ldots \ldots x_{n}$ are the errors in n measurements of a parameter, then according to the principle of least squares.
A) $x_{1}^{2} \cdot x_{2}^{2} \cdot x_{3}^{2} \ldots \ldots \ldots x_{n}^{2}=$ minimum
B) $x_{1}^{2} \cdot x_{2}^{2} \cdot x_{3}^{2} \ldots \ldots \ldots+x_{\mathrm{n}}^{2}=$ minimum
C) $x_{1}^{2} \cdot x_{2}^{2} \cdot x_{3}^{2} \ldots \ldots \ldots x_{n}^{2}=$ maximum
D) $\left(x_{n}-x_{1}\right)^{2}+\left(x_{n}-x_{2}\right)^{2}+\ldots \ldots \ldots+\left(x_{n}-x_{n-1}\right)^{2}=$ minimum
149. Errors occuring due to lack of care on the part of observer is termed as
A) random error
B) systematic error
C) probable error
D) gross error
150.A set of elements of a group which itself forms a group is called a
A) sub-group
B) finite group
C) Abelian group
D) cyclic group

TRB PG ASSISTANTS 2006-07 - PHYSICS - ANSWERS

$1 \ldots . .$. D	2.	... C	3 C	4	B	 A	 A	7	A	8	B	9	D	10....... B
11...... D	12.	A	13 A	14	C	15 B	16 B	17	B	18	A	19	D	20....... B
21...... C	22.	.. C	23	A	24	D	 C	 B	27	B	28	B	29	A	$30 \ldots . . .$. B
31...... B	32.	B	33	$\ldots .$. D	34 C	 B	 C	37	.. A	38	B	39	.	40........ A
41...... C	42.	. A	43	B	44 *	45	... B	46 D	47	B	48	.. B	49	. A	50........ C
51...... B	52.	. A	53	B	54	.. C	 B	 A	57	B	58	B	59	A	$60 \ldots . . .$. C
61....... A	62.	C	63	B	64	A	 A	 B	67	D	68	B	69	A	$70 \ldots$. B
71...... C	72		73	B	74	B	 C	 C	77	D	78	B	79	A	80........ C
81...... B	82	B	83	$\ldots . .$. D	84	A	 C	 A	87	A	88	. A	89	A	90........ D
91...... D	92.	. A	93	. A	94	B		... B	 C	97	B	98	C	99	B	100 A
$101 \ldots .$. B	102.	.. A	103	A	104	A		... B	106 D	107	C	108	C	109	D	110....... A
$111 \ldots .$. B	112.	. A	113	B	114	A	115	D	116 C	117	D	118	C	119	B	120 C
$121 \ldots .$. C	122.	... B	123 C	124	... A	125 C	126 A	127	D	128		129	B	130 A
$131 \ldots .$. D	132.	... D	133 B	134	B	135 C	 D	137 A	138 A	139	B	140 C
$141 \ldots .$. B	142. A	143 C	144 B	145 D	146 C	147 C	148 C	149 C	150....... A

